基于最先策略增强学习的ART2神经网络  被引量:3

Foremost-Policy Reinforcement Learning Based ART2 Neural Network

在线阅读下载全文

作  者:樊建[1] 吴耿锋[1] 

机构地区:[1]上海大学计算机工程与科学学院

出  处:《模式识别与人工智能》2006年第3期428-432,共5页Pattern Recognition and Artificial Intelligence

基  金:上海市科学技术发展基金项目(No.015115042);上海市教委第4期重点学科建设项目(No.B682)

摘  要:提出一种基于最先策略增强学习的 ART2神经网络 FPRL-ART2(Foremost-Policy Reinforcement Learn-ing based ART2 neuraI network),并介绍其学习算法.为了达到在线学习的目的.在 FPRL-ART2中,从状态到行为值之间的映射中,选择第一个得到奖励的行为,而不是选择诸如1-step Q-Learning 中具有最优行为值的行为.ART2神经网络用于存储分类模式,其权重通过增强学习增强或减弱,达到学习的目的.并将 FPRL-ART2运用到移动机器人避碰撞问题的研究中.仿真实验表明,引入 FPRL-ART2后减少移动机器人与障碍物发生碰撞的次数,具有良好的避碰效果.A foremost-policy reinforcement learning based ART2 neural network (FPRL-ART2) and its learning algorithm are proposed in this paper. To fit the requirement of real time learning, the first awarded behavior based on present states is selected in our Foremost-Policy Reinforcement Learning (FPRL) in stead of the optimal behavior in 1 step Q-Learning. The algorithm of FPRL is given and it is integrated with ART2 neural network. The stored weights of classified pattern in ART2 is increased or decreased by reinforcement learning. The FPRL-ART2 is successfully used in collision avoidance of mobile robot and the simulation experiment indicates that the times of collision between robot and obstacle is effectively decreased. The FPRL-ART2 makes favorable result of collision avoidance.

关 键 词:增强学习 ART2神经网络 最先策略 避碰撞 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象