检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈伏兵[1] 陈秀宏[1] 张生亮[2] 杨静宇[2]
机构地区:[1]淮阴师范学院数学系,淮安223001 [2]南京理工大学计算机科学系,南京210094
出 处:《计算机工程》2006年第14期179-180,183,共3页Computer Engineering
基 金:国家自然科学基金(60472060);江苏省自然科学基金(05KJD520036)
摘 要:提出了模块二维主成分分析(M2DPCA)线性鉴别分析方法。M2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能有效地降低模式原始特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;此外,2DPCA是M2DPCA的特例。在ORL人脸库上试验结果表明,M2DPCA方法在识别性能上优于PCA,比2DPCA更具有鲁棒性。This paper presents modular two dimensional principal component analysis (M2DPCA)——a novel technique for human face recognition. First, the original images are divided into sub-images images in proposed approach. Then, the well-known 2DPCA method can be directly used to the sub-images obtained from the previous step. There are two advantages for this way: (1)dimension reduction of original pattern features can be done efficiently; (2)singular value decomposition of matrix is absolutely avoided in the process of feature extraction so the discriminant features can be gained easily. Moreover, 2DPCA is the special case of M2DPCA. To test and to evaluate the performance of M2DPCA, a series of experiments are performed on ORL human face image database. The experimental results indicate that the recognition performance of M2DPCA is superior to that of PCA and is robust than that of 2DPCA at the same time.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248