检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪国军[1]
出 处:《浙江大学学报(理学版)》2006年第4期361-364,371,共5页Journal of Zhejiang University(Science Edition)
基 金:浙江省自然科学基金资助项目(102028);浙江省教育厅基金资助项目(407101-G202322)
摘 要:首先引入群分次弱正则环的概念,在此基础上证明了:(1)设G是群,J是K的分次理想,Jσ=Kσ∩J,则K是群分次弱正则环当且仅当J和K/J是群分次弱正则环.(2)假设K是一个环,n是任一正整数,则K是群分次弱正则的当且仅当Mn(K)是群分次弱正则的.如果K是群G分次环,则Ke是K的子环,且1∈Ke(其中e是群G的单位元).得到了群G-分次环K与Ke的一些关系.再者,引进了分次半平坦模的概念,并有如下主要结果:环K是分次弱正则的当且仅当所有右K-模是分次半平坦的.群分次弱正则环推广了群分次正则环,从而得到群分次正则环的相应结果.The concept of group-graded weakly regular ring is introduced. On this basis, it is proved that : (1) If G is a group, J is a graded ideal of K, Jσ= Kσ ∩ J, then K is a group-graded weakly regular ring if and only if J and K/ J are group-graded weakly regular rings; (2)If K is a ring, n is a positive integer, then K is a group-graded weakly regular ring if and only if Mn (K) is a group-graded weakly regular ring. If K is a group-graded weakly regular ring, then Ke is a subring of K, and 1∈ Ke (e is the unit of group). Some relations are given on group graded weakly regular ring K and Ke. Next, the concept of graded semiflat module is introduced and proved that K is a group-graded weakly regular ring if and only if all right K module is graded semiflat module. Group-graded weakly regular rings are the generalization of group-graded regular rings, so the result of group-graded regular rings are similiar.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7