检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓松[1] 元昌安[2] 杨乐婵[1] 饶元[1] 廖剑平[1]
机构地区:[1]广西师范学院资环学院 [2]广西师范学院信息技术系
出 处:《广西师范学院学报(自然科学版)》2006年第2期46-50,55,共6页Journal of Guangxi Teachers Education University(Natural Science Edition)
基 金:广西自然科学基金(0339039);广西教育厅项目
摘 要:遗传算法(Genetic Algorithms,GAs)作为一种新的全局优化搜索算法,在各学科中有着广泛的应用,选择策略在GA的进化中具有重要的意义,直接决定GA进化结果的效率和效果,该文指出基于轮盘赌选择的遗传算法和基于传统期望值选择的遗传算法的不足,并在此基础上提出了基于改进型期望值选择的遗传算法(RevisedExpected Value Selection-GA,REVS-GA),提高了程序的简洁度,同时通过实验证明了REVS-GA有效地克服了“早熟”现象,并且执行的效率比传统算法高.Genetic Algorithms is used widely in the many subjects as a new global optimal algorithms, such as Machine Learning,Artificial Intelligence, Image Processing etc. In the Genetic Algorithms, Selection Operator is one of the important operators. The traditional Selection Operator based on Roulette Wheel and Expected Value may result in "prematuration" and low efficiency of programming. To solve the problem, this paper puts forward a new selection stratagem: Revised Expected Value Selection- GA(REVS- GA). The comparison experiments show that REVS- GA increases the global convergent times, reduces generations of evolving, furthermore improving greater efficiency of programming than traditional methods.
分 类 号:TP31[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31