一类非时齐非Lipschitz条件下带跳的倒向随机微分方程的适应解及比较定理  被引量:1

Adapted Solutions and Comparison Theorem of a Class of BSDE with Jumps under Non-Time-Homogeneous and Non-Lipschitz Conditions

在线阅读下载全文

作  者:孙信秀[1] 谢颖超[2] 

机构地区:[1]苏州市职业大学远程教育学院电子系,苏州215000 [2]徐州师范大学数学系,徐州221116

出  处:《应用数学学报》2006年第4期688-698,共11页Acta Mathematicae Applicatae Sinica

基  金:国家自然科学基金(10471120);江苏省高校自然科学基金(05KJDll0220);徐州师范大学自然科学基金(04XLA15;05PYL02)资助项目.

摘  要:对系数f(t,y,z,k)满足非常一般的非时齐非Lipschitz条件,本文给出一类带跳的倒向随机微分方程局部和整体解的存在唯一性的证明,同时本文也研究了带跳的倒向随机微分方程的比较定理,从而把前人的相应结果推广到更一般情形.It is proved that the existence and uniqueness of the local solutions and whole solutions of BSDE with jumps under the non-time-Homogeneous and non-Lipschftz coefficient f(t,y,z,k). Simultaneously, the comparison theorems of solutions of BSDE with Jumps are been studied in this paper. The corresponding results in the previous paper are been generalized .

关 键 词:带跳的倒向随机微分方程 非时齐非 LIPSCHITZ条件 比较定理 

分 类 号:O211.63[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象