有限交换环上极限线性群的Sylowp—子群  

Sylow p-subgroups of the Limit Linear Group GL Over Finite Commutative Rings

在线阅读下载全文

作  者:刘绍武[1] 游宏[1] 

机构地区:[1]黑龙江大学,哈尔滨工业大学

出  处:《数学进展》1996年第5期456-462,共7页Advances in Mathematics(China)

摘  要:本文给出了有限交换局部环R上无限线性群GL(R)=∪nGLnR的Sylowp-子群的形式.令M是有限交换局部环R的唯一极大理想,k=R/M为R的剩余类域.用X(k)表示k的特征,并假定P与x(k)互素.作者证明了:GL(R)的任一Sylowp-子群S或者同构于的可数无限直积与P(j)的无限直积的直积(当P≠2或P=2,X(k)β≡1(mod4))或者同构于Pi的无限直积与P(j)的无限直积的直积(当P=2,X(k)β≡3(mod4)),这里,只是GL(epi)R(分别地,GL(2ri)R)的Sylowp-子群,P(j))同构于P=∪i∈Ipi,I是可数集.The present paper described the form of Sylow p-subgroups of the limit linear group GL(R)=∪nGLnR over a finite commutative local ring R. Let M be the unique maximal ideal of R,and k=R/M be the residue field of R. Denote by X(k) the characteristic of k and assume that p is prime to X(k). We proved that an. arbitrary Sylow p-subgroup S of the group GL(R)is either isomorphic to the direct product of the direct product of denumerable P and the direct product of infinite p(j) (when p≠2 or p = 2, X(k)β≡1(mod 4)) or is isomorphic to the direct product of the direct product of infinite Pi and the direct product of the infinite p(j) (when P = 2, X(k)β= 3(mod 4)), where Pi is the Sylow p-subgroup of GL(epi)R (Resp, GL(2ri)R), P(j)is isomorphic to P = ∪i∈IPi, I is a denumerable set.

关 键 词:无限线性群 局部环 SYLOW子群 交换环 线性群 

分 类 号:O152.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象