检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学计算机科学与技术学院,黑龙江哈尔滨150001 [2]南开大学软件学院,天津300071
出 处:《哈尔滨工程大学学报》2006年第B07期374-378,共5页Journal of Harbin Engineering University
基 金:黑龙江省自然科学基金资助项目(F03-04,F2005-02).
摘 要:为了在并行计算系统中应用支持向量机,提出一种基于多支持向量机分类器的并行学习算法.分析了w-model算法的不足,并在训练过程中采用循环式反馈更新各支持向量机分类器以避免样本的分布状态对各分类器性能的影响,提高各分类器的训练精度.学习过程以平均分类精度为阈值,对部分分类器重新训练,实现对多分类器学习系统性能的全局优化.在UCI标准测试数据集上进行的实验结果表明,循环式反馈能有效地平衡多分类器学习性能相差过大的问题,算法较w-model具有更高的训练效率和分类效率.In order to apply support vector machine to parallel computation setting, a parallel leaming algorithm based on multiple support vector machine classifiers is proposed. The deficiencies of w-model algorithm are analyzed, Classifiers are updated by circular feedbacks to avoid the potential impact of training samples' distribution to the classifiers and improve training accuracy of classifiers during the training. The mean classification precision is taken as a threshold to select parts of classifiers which need be trained again and the performance optimization of the whole learning system is achieved. The experimental results on the UCI standard test datasets show that the proposed circular feedback strategy is effective to balance the classification performance of multiple classifiers, and the proposed algorithm has higher training and classification efficiencies compared with w-model algorithm.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30