应用神经网络和AE信号对磨削烧伤的在线检测  

Grinding Burn Online Detected by Neural Network and Acoustic Emission

在线阅读下载全文

作  者:周洪煜[1] 陈晓锋[1] 张梅有[1] 王驹[1] 

机构地区:[1]重庆大学动力工程学院,重庆400044

出  处:《计算机测量与控制》2006年第8期990-991,1015,共3页Computer Measurement &Control

摘  要:磨削烧伤是磨削过程中常见缺陷之一,严重影响被加工零件质量和使用寿命,运用RBF神经网络和AE传感器实现了磨削过程中磨削烧伤的在线检测,通过分析磨削加工中AE信号的特性,计算240~400kHz内的信号有效值,峭度和歪度,处理后作为神经网络的输入向量,完成磨削烧伤的在线识别,通过比较在线识别结果和离线检测结果,证明了该在线检测系统具有较高的准确性.Grinding burn forms frequently in grinding process, it decreases quality and the useful life of workpieces. A method is proposed to detect the workpiece burn online in grinding process by RBF neural network. The grinding acoustic emission (AE) signals were collected and digested to extract feature vectors that appear to he suitable for neural network processing. The feature vectors, which consists of band power, kurtosis and skew were the statistics extracted from the 240 kHz to 400 kHz AE Signals. Compared the results of offline testing with the results of online detecting, this online detecting system was proved efficient and accurate.

关 键 词:神经网络 发射声 磨削 烧伤检测 

分 类 号:TP206[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象