关于(k,n-k)共轭边值问题的Green函数  

Green’s Function of (k,n ? k ) Conjugate Boundary Value Problems

在线阅读下载全文

作  者:胡卫敏[1] 谷丽[1] 

机构地区:[1]伊犁师范学院数学系,新疆伊宁835000

出  处:《伊犁师范学院学报(社会科学版)》2006年第3期1-4,共4页Journal of Yili Normal University

摘  要:主要给出了(k,n?k)共轭边值问题(0)001(0)001(1)()01()()()()tC|tjny|kiky|tyt|jinknkξξξ且在上(1)的唯一正解y(t)=∫01G(t,s)ξ(s)ds(0≤t≤1)中Green函数G(t,s)的构造式为?????????????+?≤≤≤?????+?≤≤≤=∑∑?=???????=?????10111011[(1)](),01(1)!(1)!(1)(),01()[(1)](1)!(1)!(1)(,)kjjjkjknknknkjjjnkjnkkktsstnkjCstknktssttskjCtsknktsGts(2)In this paper ,we find that unique positive solution of Green's function G(t,s) to the (k, n- k) conjugate boundary value problem {(-1)^(n-k)y^(n-k)=ζ(t),0〈t〈1 y^(i)(0)=0,0≤i≤k-1 y^(j)(0)=0,0≤j≤n-k-1 ζ(t)∈C[0,1](1) Can be explicitly given by G(t,s)={t^k(1-s)^k/(k-1)!(n-k-1)! n-k-1↑∑↑j=0Cn-k-1^j[t(1-s)]^j/(k+j)(s-t)^n-k-1-j,0≤t≤s≤1 (1-t)^n-ks^n-k/(k-1)!(n-k-1)! k-1↑∑↑j=0Ck-1^j[s(1-t)]^j/n-k+j(t-s)^k-1-j,0≤s≤t≤1(2).

关 键 词:(k n-k)共轭边值问题 GREEN函数 正解 

分 类 号:O175.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象