Drazin Spectrum and Weyl's Theorem for Operator Matrices  被引量:5

Drazin谱和算子矩阵的Weyl定理(英文)

在线阅读下载全文

作  者:曹小红[1] 郭懋正[1] 孟彬[1] 

机构地区:[1]北京大学数学科学学院应用数学实验室

出  处:《Journal of Mathematical Research and Exposition》2006年第3期413-422,共10页数学研究与评论(英文版)

基  金:the National Natural Science Foundation of China (10571099)

摘  要:A∈B(H) is called Drazin invertible if A has finite ascent and descent. Let σD (A)={λ∈ C : A -λI is not Drazin invertible } be the Drazin .spectrum. This paper shows that if Mc =(A C 0 B)is a 2 × 2 upper triangular operator matrix acting on the Hilbert space H + K, then the passage from OσD(A) U σD(B) to σD(Mc) is accomplished by removing certain open subsets of σD(A)∩σD(B) from the former, that is, there is equality σD(A)∪σD(B)=σD(MC)∪Gwhere G is the union of certain holes in σD (Me) which happen to be subsets of σD (A)∩σD (B). Weyl's theorem and Browder's theorem are liable to fail for 2×2 operator matrices. By using Drazin spectrum, it also explores how Weyl's theorem, Browder's theorem, a-Weyl's theorem and a-Browder's theorem survive for 2×2 upper triangular operator matrices on the Hilbert space.A∈B(H)称为是一个Drazin可逆的算子,若A有有限的升标和降标.用σ_D(A)={λ∈C:A-λI不是Drazin可逆的)表示Drazin谱集.本文证明了对于Hilbert空间上的一个2×2上三角算子矩阵M_C=■,从σ_D(A)∪σ_D(G)到σ_D(M_C)的道路需要从前面子集中移动σ_D(A)∩σ_D(B)中一定的开子集,即有等式:σ_D(A)∪σ_D(B)=σ_D(M_C)∪G,其中G为σ_D(M_C)中一定空洞的并,并且为σ_D(A)∪σ_D(B)的子集.2×2算子矩阵不一定满足Weyl定理,利用Drazin谱,我们研究了2×2上三角算子矩阵的Weyl定理,Browder定理,a-Weyl定理和a-Browder定理.

关 键 词:Weyl's theorem a-Weyl's theorem Browder's theorem a-Browder's theorem Drazin spectrum. 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象