检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:穆宝忠[1] 刘玉玲[1] 陆祖康[1] 余飞鸿[1]
机构地区:[1]浙江大学现代光学仪器国家重点实验室,浙江杭州310027
出 处:《浙江大学学报(工学版)》2006年第9期1494-1497,共4页Journal of Zhejiang University:Engineering Science
摘 要:为了提高神经网络在数码冲印颜色空间转化应用中的收敛效率,设计了一种基于反向传播(BP)神经网络的自适应优化模型.通过等间距分割由曝光实验测得的青、品、黄染料累积色差曲线,构建了在CIE Lab色域空间内分布相对规则的大容量学习样本.基于对网络训练过程中隐含层神经元节点间相关性和离散性的动态分析,合并或删除了冗余的节点结构.根据学习速率对网络收敛效率的影响,引入全局平均误差(GME)作为权值,对学习速率进行即时调整.仿真结果表明,与传统的BP神经网络相比,优化后的神经网络模型收敛成功率显著提高,收敛速度加快.输出精度能够满足色差要求.To improve the convergence efficiency of neural network in color space conversion of digital photofinishing, an adaptive optimization model based on BP neural network was designed. By dividing the exposal-tested color-difference curves of cyan, magenta and yellow cumulative dye with constant steps, a large number of samples distributing relatively regularly in CIE Lab color space were generated. Based on the dynamic analysis of hidden-neuron-node's relativity and radiativity in the process of network training, the unwanted nodes were combined or deleted. According to the influence of learning rate on convergence efficiency of neural network, global mean error (GME) was implemented as weight to adjust learning rate in real-time. The simulation results indicate that the adaptive optimization model of neural network has better convergence probability and speed than the traditional BP neural network, and that its output precision can meet the demand of color-difference.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249