基于神经网络的业务量预测研究  被引量:2

Research on Predicting Network Traffic Using Neural Networks

在线阅读下载全文

作  者:王兆霞[1] 孙雨耕[1] 王志勇[2] 郝庭柱[2] 孙小薇[3] 秦娟[2] 沈花玉[2] 

机构地区:[1]天津大学电气与自动化工程学院,天津300071 [2]天津理工大学光电信息与电子工程学院,天津300191 [3]桂林电子科技大学通信与信息工程系,广西桂林541004

出  处:《光电子.激光》2006年第10期1255-1258,共4页Journal of Optoelectronics·Laser

基  金:中国博士后科学基金资助项目(2005037529);教育部博士学科点基金资助项目(20030056007);天津市高等学校科技发展基金资助项目(20041325);天津理工大学育苗资助项目(LG03018)

摘  要:分别采用back-propagation(BP)算法和Favidon最小二乘学习算法训练神经网络(NN),并用于复杂业务流量预测。以自相似流量模型验证了2种NN学习算法的有效性,并分析比较了他们在流量预测中的可行性,得出Davidon最小二乘学习算法训练的NN比BP算法收敛速度快、收敛误差相差不多,验证了复杂自相似业务流的可预测性,为复杂自相似网络业务流预测的研究提供了一种有效途径。This paper used Back-propagation(BP) algorithms and Davidon least squaresbased learning algorithm to train the neural network(NN) to predict the nonlinear self-similar network traffic respectively. The feasibility and advantage of these two algorithms were discussed by analyzing the Mean learning errors, training errors and the convergent speed of these two training algorithms. The simulation demonstrated that the NN trained by both of these two training algorithms can well predict this traffic, Compared with BP algorithms, the Davidon least squares-based learning algorithm can converge quickly and has the al- most same prediction accuracy, It supplied a feasible method to predict the complex selfsimilar network traffic.

关 键 词:网络流量预测 神经网络(NN) back-propagation(BP)算法 最小二乘学习算法 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象