基于相似日小波支持向量机的短期电力负荷预测  被引量:20

Short Term Load Forecasting Using Wavelet Transform and SVM Based on Similar-Days

在线阅读下载全文

作  者:刘梦良[1] 刘晓华[2] 高荣[2] 

机构地区:[1]山东农业大学信息与工程学院,泰安271018 [2]鲁东大学数学与信息学院,烟台264025

出  处:《电工技术学报》2006年第11期59-64,共6页Transactions of China Electrotechnical Society

基  金:山东省教育厅科研资助项目(Y2005G01)

摘  要:对受不确定性影响的短期电力负荷,本文给出一种基于小波支持向量机的预测方法。采用小波变换将日负荷数据分解到不同尺度上,利用各相似日低频部分的最大最小负荷构造相似系数,通过支持向量机预测一天中最大和最小负荷,结合相似系数得到预测日低频部分各时刻的预测值;对于高频部分采用各时刻均方加权的方法预测负荷值,把各部分的负荷值叠加得到完整的负荷预测值。用山东某电力公司的数据进行数据仿真,取得了较好的预测效果。For the short-term electric power load with uncertain influence factors, a novel approach is proposed by combining the wavelet transform (WT) and support vector machine (SVM). From the signal analysis point of view, load can also be considered as a linear combination of different frequencies. By the WT, the different load sequence components are projects to the different scales. Based on the maximum and minimum loads of the approximate part, the similar coefficients are given. The support vector machine is used to forecast the maximum and minimum load of the forecasting day. The short term load forecasting is forecasted by summing the predicted approximate part and the weighted detail parts. The numerical simulation results show this approach is encouraging.

关 键 词:负荷预测 相似日 小波变换 支持向量机 

分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象