检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学海洋工程国家重点实验室,上海200030
出 处:《计算力学学报》2006年第6期743-748,共6页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金(10202013);上海市高校优秀青年教师后备人选资助项目
摘 要:由Hamilton原理导出考虑初始缺陷及横向剪切变形时裂纹梁的动力屈曲控制方程;应用断裂力学中常用的线弹簧模型将裂纹引入到屈曲控制方程中;基于B-R动力屈曲判断准则,采用数值方法求解了受轴向冲击载荷作用时裂纹梁的动力屈曲;对比讨论了不同冲击速度、初始几何缺陷大小以及分布形式等因素对梁冲击动力屈曲的影响。This paper investigates the dynamic buckling of a cracked beam with geometric imperfections subject to impacting. For a cracked beam, the dynamic buckling control equations are derived from Hamilton's principle using the first order shear deformation theory. The discrete equations are obtained using the finite difference method. The effect of crack is taken into account in buckling control equations using line-spring model of fracture mechanics. According to the B-R dynamic buckling criterion, the critical velocity of dynamic buckling of cracked beams is obtained. In addition, the effects of impact velocity and initial geometric imperfections on the impact dynamic buckling of perfect beams and cracked beams are discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.27