弹性力学极坐标辛体系Hamilton函数的守恒律  被引量:3

CONSERVATION LAW OF HAMILTONIAN FUNCTION IN SYMPLECTIC SYSTEM OF POLAR COORDINATE ELASTICITY

在线阅读下载全文

作  者:朱炳麒[1] 卓家寿[2] 周建方[1] 

机构地区:[1]河海大学机电工程学院,江苏常州213022 [2]河海大学土木工程学院,江苏南京210098

出  处:《工程力学》2006年第12期63-67,72,共6页Engineering Mechanics

基  金:教育部高等学校博士学科点专项科研基金(20010294002)

摘  要:用弹性力学直角坐标辛体系中类似的形式,定义了极坐标问题径向和环向辛体系的Hamilton函数,对其守恒性进行了研究,由Hamilton对偶方程推出了Hamilton函数的守恒律,同时给出了守恒条件,指出两种极坐标辛体系中Hamilton函数是否守恒均取决于两侧边的荷载和位移情况。在径向和环向辛体系中都给出了算例,验证了Hamilton函数的守恒律。这一守恒律丰富了弹性力学辛体系的理论内容,不仅对于弹性力学极坐标问题的理论分析有所帮助,也为极坐标问题的数值计算分析提供了一个判断依据。With similar form of Hamiltonian function in symplectic system of rectangular coordinate elasticity, the function is defined in both radial and circumferential symplectic system of polar coordinate problems. The conservation property of Hamiltonian function is discussed. The conservation law of Harniltonian function is deduced from Hamilton's dual equations, and the conservation condition is presented. It is pointed out that whether Hamiltonian function is conservative depends on the loads and displacements on two sides in two symplectic systems of polar coordinate elasticity. Two examples are given to verify the conservation law in radial and circumferential symplectic system. The law is useful in analyzing the polar coordinate elasticity and provides an estimating basis for numerical calculations in this field.

关 键 词:弹性力学 极坐标 径向辛体系 环向辛体系 HAMILTON函数 守恒律 

分 类 号:O343[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象