基于本体的专业机器翻译术语词典研究  被引量:10

Researches on Ontology-based Technical Lexicons for Specialty Machine Translation

在线阅读下载全文

作  者:黄河燕[1] 张克亮[1] 张孝飞[2] 

机构地区:[1]南京理工大学,江苏南京210094 [2]中科院计算机语言信息工程研究中心,北京100083

出  处:《中文信息学报》2007年第1期17-22,共6页Journal of Chinese Information Processing

基  金:国家863计划资助项目(2004AA1170010-02);国家自然科学基金资助项目(60272088)

摘  要:在专业机器翻译系统的设计和实现中,要解决的一个关键问题是如何有效地组织面向不同专业领域的专业术语,以及如何根据当前所处理的文本选择相应的术语定义。本文首先分析现有专业机器翻译系统在术语词典组织和建设方面存在的主要问题,以及基于本体(Ontology)的领域知识概念体系的特点;其次,探讨面向专业机器翻译的术语词典研究的几个重要方面,包括通用领域本体的设计、专业术语的描述和向本体的映射、双语或多语MT专业词库的组织和应用等;最后,介绍我们初步已完成的工作,主要包括机器翻译专业领域分类系统设计、专业词典向专业分类系统的映射I、CS标准向专业领域分类系统的映射等。映射实验结果表明,专业领域分类系统对于机器翻译专业词典具有良好的覆盖性。In the design and implementation of specialty machine translation systems, a crucial concern is the efficient organization of domain-speclflc technical terms and the intelligent selection of terminological meanings on the basis of the text being processed. This paper begins with an analysis of some problems ubiquitous in technical lexicons for specialty MT systems and a brief introduction to the features of ontology-based domain-specific conceptual systems. Some important aspects of specialty MT-oriented technical lexicons are then studied, including the design of general- purpose specialty ontology, the description of technical terms and their mapping to specialty ontology, the organization and application of bilingual or multilingual MT domain-specific lexicons. Last, the paper presents some of the experimental work, covering the design of a draft MT-oriented specialty classification system, the mapping from technical lexicons to specialty classification system, and the mapping from ICS(International Classification System) to the MT specialty classification system. The results of the mapping experiments prove that the classification system conducted by the paper has a desirable coverage over MT technical lexicons.

关 键 词:人工智能 机器翻译 本体 术语词典 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象