检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东工业大学计算机学院,广东广州510006 [2]中国移动通信集团广东有限公司,广东广州510100 [3]华南理工大学计算机科学与工程学院,广东广州510640
出 处:《计算机应用》2007年第1期80-83,共4页journal of Computer Applications
基 金:广东省自然科学基金资助项目(6300252);广东工业大学博士启动基金资助项目(063001);国家自然科学基金资助项目(30230350)
摘 要:在综述了T细胞表位预测的定义,意义和研究现状的基础上,分析了当前流行的基于误差反向传播前馈神经网络(BPNN)的T细胞表位预测模型的不足,即网络结构较难确定、训练速度慢和难以增量学习等,提出了利用排序学习前向掩蔽(SLAM)模型及其增量学习算法作为T细胞表位预测方法,并给出了构建T细胞表位预测模型的基本步骤。基因HLA-DR4(B1*0401)编码的MHC II类分子结合肽的应用实例表明,与基于BPNN的T细胞表位预测模型相比,基于SLAM的T细胞表位预测模型不但能在极短时间内完成样本的学习,而且能有效地实现增量学习。The definition, the meaning and the state-of-art of T cell epitope prediction were firstly summarized. And then, the disadvantages of the prevailing T cell epitope prediction model based on the Back-Propagation Neural Networks (BPNN), including difficulties in presetting networks structure, converging and incremental learning, were investigated. In terms of the above-mentioned drawbacks, Sequential Learning Ahead Masking model (SLAM) and its fast incremental learning algorithm were deliberately chosen to predict T cell epitope. Meanwhile, the basic steps of constructing T cell epitope prediction model based on SLAM were advocated. Finally, a case study of predicting the binding capacities to MHC class II molecule encoded by gene HLA-DR4 ( B1 * 0401.) was given in detail. The application results show that T cell epitope prediction model based on SLAM has better learning performance and stronger incremental learning capabilities than that based on conventional BPNN.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3