检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《传感技术学报》2007年第1期193-197,共5页Chinese Journal of Sensors and Actuators
基 金:广东省教育厅自然科学研究基金资助(Z03076);广东江门市科技攻关项目资助([2004]59)
摘 要:为提高多传感器数据融合精度,结合传感器网络的特点及应用实例,研究分批估计、自适应加权和方差估计算法在数据融合中的有效性、准确度和实时性,提出按测量方差的自适应加权数据融合算法,利用600个传感器所提供的实例数据,对几种算法进行仿真,并比较了几种算法的有效性及其融合精度的差异,其结果表明采用自适应加权算法可以有效提高融合精度,对考虑了环境噪声的多传感器数据采集系统较为适合.In order to advance accuracy of multi-sensor data fusion, the validity and degree of accuracy and actual time of batched-estimation algorithm, weighing-estimation algorithm and variance-estimation algorithm were studied on multi-sensor data fusion, integrating the characteristic of the sensors network and its applications. Weighing-estimation algorithm by inspected-variance was proposed and the validity and their difference of the precision in data fusion were illustrated on PC simulation, basing the data from 600 sensors. The PC simulation shows that weighing-estimation algorithm by inspected-variance improves the precision efficiently, and it is more reasonable for multi-sensors data acquisition systems when consider environment noises.
关 键 词:传感网络 数据融合 分批估计 自适应加权 方差估计
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117