检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京邮电大学 自动化学院,江苏南京210003 [2]新加坡高性能计算研究所,新加坡117528 [3]浙江大学 先进控制研究所工业控制技术国家重点实验室,浙江杭州310027
出 处:《控制理论与应用》2006年第6期895-899,906,共6页Control Theory & Applications
基 金:国家863计划资助项目(2001AA413020);国家杰出青年科学基金(60025308).
摘 要:针对PX氧化过程中的4-CBA浓度的估计问题,提出了基于支持向量机和粒子群算法来估计机理模型参数的方法.用支持向量机回归来提取特征样本,这些少量的特征样本估计机理模型参数可以减少计算时间,同时避免了人工随机试凑法选择训练样本的盲目性.采用粒子群算法来估计非线性机理模型的参数,可以避免传统方法对初始点和样本的依赖.工业实例表明,本文提出的方法是有效的.The estimation of 4-CBA (carboxybenzaldchydc) concentration in industrial PTA (purified terephthalic acid) oxidation process is of fundamental importance in process monitoring, advanced control and optimization. The support vector machine (SVM) and particle swarm optimization (PSO) algorithms are used to estimate the parameters of the first principle model. The training set for estimating the parameters is the feature subset selected by SVM regression algorithm, which overcomes the drawback of the trail-and-error method. Parameter estimation method based on the PSO algorithm is also used to avoid dependence on initial parameters and training samples. By use of real industrial data, the simulation results show that the presented method is effective for modeling the soft sensor of 4-CBA concentration in industrial PTA oxidation process.
关 键 词:支持向量机 特征样本 粒子群优化算法 PTA氧化过程 软测量
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.122.130