检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学制造学院,四川成都610065 [2]四川电力职业技术学院,四川成都610072
出 处:《中国医学物理学杂志》2007年第1期29-33,共5页Chinese Journal of Medical Physics
摘 要:为了从CT图像中提取到多个组织的解剖特征,克服运算速度快与运算结果不稳定的矛盾,提出了一种基于概率分布和模糊熵的CT图像分割方法。为了找到分割灰度图象的最佳阈值,根据模糊聚类和概率配分之间的关系,以及模糊熵有最大值的必要条件,从而得到各类的概率配分,因此在搜索阈值组合时,先搜索满足各类概率配分的阈值,然后从这些阈值中搜索使模糊熵最大的阈值。实验结果表明该方法能很好地完成CT图象的分割。此算法运算速度较快;与用遗传算法、模拟退火算法相比较,运算结果稳定,分割更准确。In order to extract anatomical feature of several tissues from CT image and solve the contradiction between the improvement of the searching speed and instability of the results, a method for image segmentation using probability partition and maximum fuzzy entropy is proposed. In this method, in order to find the optimal threshoding, based on the relationship between the fuzzy clustering and probability partition and a necessary condition of having maximum fuzzy entropy, the probability partition of each part is derived. In the process of searching the thresholding set, we should firstly start with searching the thresholding set that satisfy probability partition and then optimal set can be found by looking for the maximum entropy from them. The experiment results show that our proposed method gives good performance for CT image segmentation. The search speed is quick and the results are steady than using genetic algorithm or simulated annealing algorithm and segmentation is more exact.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.80.203