检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长安大学地质工程与测绘工程学院,西安710054
出 处:《工程勘察》2007年第3期56-59,共4页Geotechnical Investigation & Surveying
摘 要:在公路边坡变形监测与预测中,当用GM(1,1)模型对稳定的变形数据序列进行预测时,效果较好。但是,如果变形数据中因外界因素干扰而出现异常数据,使变形曲线发生波动,此时单纯采用GM(1,1)模型进行预测,就难以取得理想的预测精度。为此,本文提出一种基于卡尔曼滤波的GM预测模型,即先用卡尔曼滤波法对原始变形监测数据进行滤波处理,而后再建立GM模型进行灰色预测。通过公路边坡变形预测的应用研究,证明基于卡尔曼滤波的GM模型可以有效地提高预测精度。In road slope deformation monitoring and forecasting, when GM is used, it can get good results in forecasting the steady deformation data. However, the forecast precision of GM model will decline when the abnormity data appear and the deformation data curve fluctuate up and down with the changeful environmental conditions. In this situation, the forecast results of GM model will become worse. Therefore, this paper presents a GM model based on Kalman filter. This model uses Kalman filter method to filter the original deformation monitoring data, and then, builds the GM model to forecast road slop deformation. The related case studying has proved that this Kalman filter based GM model can effectively increase the forecast precision.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28