检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学自动化工程学院,成都610054
出 处:《仪器仪表学报》2007年第1期90-94,共5页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金(60372001;90407007);教育部博士点基金(2003061406)资助项目
摘 要:在电路状态检测与故障诊断过程中,恰当地选择特征参数是诊断成败的关键。本文研究了基于神经网络的特征评价和特征提取方法,利用神经网络的训练结果对特征参数进行合理的评价。由于神经网络满足高分辨率信息压缩所需的非线性映射条件,通过特征提取将电路故障模式识别中复杂的分类问题转移到特征处理阶段,利用神经网络有效地实现了特征参数的提取。诊断实例验证了该方法的有效性。In circuit state detection and fault diagnosis, choosing proper feature parameters is vital to diagnosis. The feature estimation and extraction methods are presented; the results trained by neural network are used to evaluate feature parameters in reason. Because neural network satisfies the nonlinear mapping requirement for high-resolution information compression, the complex classification problem in circuit fault pattern recognition is transferred to feature processing stage, and feature extraction is realized by neural network effectively. An illustration validates this method.
分 类 号:TN707[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.184.40