检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张小红[1]
机构地区:[1]宁波大学数学系,宁波315211
出 处:《数学学报(中文版)》2007年第2期421-442,共22页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金(60474022);浙江省自然科学基金(Y605389)
摘 要:首先建立了非可换R0 t-模,以此为语义背景将模糊逻辑形式系统L^*拓广到非可磬情形,提出了新的模糊逻辑形式系统PL^*,证明了系统PL^*的可靠性定理.其次,引入PL^*-代数及其滤子概念,得到PL^*-代数的正规素滤子定理,借此证明了PL^*系统的完备性.最后说明了PR0 t-模及PL^*系统可能的应用方向.Firstly, non-commutative R0 t-norms (called PRo t-norms) are established, and based on PRo t-norms a new fuzzy logic formal system PL^* is constructed as a non-commutative generalization of the formal system L^*. The soundness theorem of PL^* is proved. Secondly, the notion of PL^*-algebra is introduced, and the filter theory of PL^*-algebra is constructed. By the normal prime filter theorem of PL^*-algebra, the completeness theorem of formal system PL^* is proved. Finally, the role of formal system PL^* in application field is explained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.88