检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛晓冰[1] 韩洁凌[1] 姜远[1] 周志华[1]
机构地区:[1]南京大学软件新技术国家重点实验室,南京210093
出 处:《计算机研究与发展》2007年第3期406-411,共6页Journal of Computer Research and Development
基 金:国家自然科学基金项目(60505013);江苏省自然科学基金项目(BK2005412);国家"九七三"重点基金研究发展规划基金项目(2002CB312002)
摘 要:在Web目录页面中,向用户推荐其感兴趣的链接有助于用户高效地访问网络资源.然而,用户往往不愿花费很多时间来标记训练样本,其提供的数据可能只能说明某个目录网页是否包含其感兴趣的内容,而不能明确标示出其感兴趣的具体链接.由于训练数据中缺乏对链接的标记,但预测时却需要找出用户感兴趣的链接,这就使得Web目录页面链接推荐问题相当困难.CkNN-ROI算法被提出用于解决该问题.实验表明,CkNN-ROI算法在解决这一困难的链接推荐问题上比其他一些算法更为有效.In Web index page, recommending links of interest is beneficial for users to access Web resources efficiently. However, users won't spend a lot of time labeling samples and the data provided by them may just indicate whether or not a Web index page contains contents in which they are interested but give no information about which link really meets their interests. Therefore, the problem of link recommendation in Web index page is quite difficult since the training data lacks links' label while prediction for links of interest in a new Web index page is required. This problem is converted to a unique multi-instance learning problem and then solved by the proposed CkNN-ROI algorithm. Experiments show that this algorithm is more effective than other ones on solving this difficult link recommendation problem.
关 键 词:多示例学习 机器学习 数据挖掘 WEB挖掘 链接推荐 Web目录页面
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28