基于无先导卡尔曼滤波的RBFN训练算法研究  被引量:6

Training radial basis neural networks with the unscented Kalman filter

在线阅读下载全文

作  者:张海涛[1] 李大字[1] 靳其兵[1] 耿延睿[1] 

机构地区:[1]北京化工大学信息科学与技术学院,北京100029

出  处:《北京化工大学学报(自然科学版)》2007年第2期221-224,共4页Journal of Beijing University of Chemical Technology(Natural Science Edition)

基  金:教育部留学回国人员科研启动基金;北京市教委共建项目建设计划(XK100100435);北京化工大学青年教师基金(QN0625)

摘  要:提出了应用无先导卡尔曼滤波器(UKF)来训练径向基神经网络(RBFN)的新方法。与广义卡尔曼滤波器(EKF)和双重卡尔曼滤波器(DEKF)对函数的一阶近似不同,UKF对非线性函数采用二阶近似展开,而且最重要的一点是不必求取系统的雅克比矩阵,从而大大减小计算量。本文对时间序列预测及分类问题进行了仿真,结果证实了该方法的有效性和快速性。A new method is proposed for training radial basis function networks (RBFN) using the unscented Kalman filter (UKF). In contrast to the extended Kalman filter (EKF) and the dual extended Kalman filter (DEKF), which extend the nonlinear functions using a first order approximation, the UKF uses a second order approximation. The most important consequence is that the algorithm does not require the Jacobi matrix of the system to be calculated, thus reducing the calculation complexity and resulting in considerable savings in time. Simulation results in the fields of chaotic time series prediction and classification problems demonstrate both the validity and faster speed of the proposed method.

关 键 词:径向基神经网络 卡尔曼滤波器 无先导卡尔曼滤波器 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象