多相永磁同步电机模糊神经网络控制调速系统  被引量:10

Multiple phase permanent-magnet synchronous motor speed control system based on fuzzy neural network control

在线阅读下载全文

作  者:欧阳红林[1] 成兰仙[1] 

机构地区:[1]湖南大学电气与信息工程学院,湖南长沙410082

出  处:《电机与控制学报》2007年第2期111-115,共5页Electric Machines and Control

基  金:湖南省自然科学基金资助项目(05JJ30191)

摘  要:针对多相永磁同步电机具有非线性、强耦合等特点,传统的PID控制和模糊控制均不能达到很好的控制效果问题,依据空间矢量解耦的理论,建立了多相永磁同步电机的数学模型,给出了基于模糊高斯基函数神经网络的多相永磁同步电机调速系统控制方法,并在六相永磁同步电机上做了仿真分析研究。结果表明,该控制方法反应速度较快,无超调,在突加负载后速度也能够很好跟踪给定速度。响应过程中电磁力矩及定子电流基本上无振荡现象,稳态时电磁力矩恒定,对应的六相定子电流为规整正弦波。动静态性能均优于传统的PID控制和模糊控制。The PID control and fuzzy control system could not attain satisfactory performance because of the nonlinear and strong coupling of multiple phase permanent-magnet synchronous motor. In order to get better performance and eliminate static error in multiple phase permanent-magnet synchronous motor control system, the application of a fuzzy neural network control algorithm based on Gauss function to the control of dual Y shift 30° six-phase permanent-magnet synchronous motor speed is in vestigated in this paper. The mathematical model of dual Y shift 30° six-phase permanent-magnet synchronous motor is developed according to the space vector theories. Simulation results indicate that the proposed control scheme can be effectively used in controlling the speed of six-phase permanent-magnet synchronous motor, and has quick response ,no over shoot and running after primely the scheduled speed when the load is suddenly added to. In the course of response, the electromagnetic torque and stator current basically have non oscillating phenomena, electromagnetic torque is constant in steady state, and the corresponding six-phase stator current is sine wave. The dynamic and static performance are both better than traditional PID control and fuzzy control.

关 键 词:多相永磁同步电机 模糊神经网络 高斯基函数 

分 类 号:TM351[电气工程—电机] TP273.4[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象