检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]泰山医学院信息工程学院,山东泰安271000
出 处:《泰山医学院学报》2006年第8期730-732,共3页Journal of Taishan Medical College
摘 要:目的探讨在Banach框架,P-框架,Xd-框架的对偶的不同形式。方法对Xd进行限制,并且对{fi}i∈N中的N进行分类,同时定义了范数为║y⊕z║Xd=║y║rd+║z║Zd的空间Xd=Zd⊕Yd。结果存在一列{fi}∈X,{ci}∈Xd,∑cifi收敛,并且f=∑gi(f)fi,∈X成立。在{gi}X*是一个P-框架的时候可以得到一个更加好的结果。结论Hilbert空间中框架的对偶理论可以在Banach空间中得到推广,并且可以找到原空间以及共轭空间中任一元素的重构。Objective:To study the dual of Banaeh frame,P -frame and Xd frame. Methods; we consider Xd a BK space that have the canonical unit vectors as a basis and define a Banach space with norm Xd = Zd+ Yd by dividing the indices N into two sets. Results:There exists an Xd Bessel sequence {fi} ∈X such that ∑cfi is conjective and f= ∑gi(f)fi, besides we can get a better results when { gi } belong to X^* is a p - frame.. Conclution: The dual theory of frame in a Hilbert can be generalized to a Banach space,and we can get the construction of an elements in a Banach space and its dual space.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.244