基于经验模态分解和BP神经网络的油气两相流流型辨识  被引量:4

Flow pattern identification of oil-gas two-phase flow based on empirical mode decomposition and BP neural network

在线阅读下载全文

作  者:李强伟[1] 王保良[1] 黄志尧[1] 李海青[1] 

机构地区:[1]浙江大学控制科学与工程学系工业控制技术国家重点实验室,杭州310027

出  处:《仪器仪表学报》2007年第4期609-613,共5页Chinese Journal of Scientific Instrument

基  金:国家自然科学基金(50576084)资助项目

摘  要:基于经验模态分解(empirical mode decomposition,EMD)和BP神经网络,提出了油气两相流流型辨识的新方法。应用EMD将差压信号分解成不同频率尺度上的单组分之和,并提取组分的归一化能量作为流型辨识特征量。BP神经网络以这些能量特征量为输入对油气两相流不同流型(包括泡状流、塞状流、层状流、弹状流和环状流)进行分类。实验结果表明,本文提出的流型辨识方法是有效的,其中泡状流、塞状流、层状流、弹状流和环状流的辨识精度分别为100%、89.4%、93.3%、96.3%和96.9%。Based on empirical mode decomposition (EMD) and back propagation (BP) neural network, a new method is proposed to identify flow pattern of oil-gas two-phase flow. EMD is applied to the differential pressure signal of two-phase flow to obtain frequency components with different scales, and the normalized energy of the component is extracted as the feature of flow pattern identification. With these energy features as inputs, five flow patterns such as bubble flow, plug flow, stratified flow, slug flow and annular flow are identified using BP neural network. The experimental results indicate that the proposed BP-based method is effective for the identification of flow patterns ; and the identification rates are 100% , 89.4% , 93.3% , 96.3% , and 96.9% for bubble flow, plug flow, stratified flow, slug flow and annular flow respectively.

关 键 词:经验模态分解 BP神经网络 油气两相流 流型 差压信号 

分 类 号:O359.1[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象