检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨师范大学数学与计算机科学学院 [2]东北师范大学数学与统计学院,吉林长春130024
出 处:《黑龙江大学自然科学学报》2007年第2期245-248,共4页Journal of Natural Science of Heilongjiang University
摘 要:文献[1]构造了特征p=3的域F上的Cartan型模李代数K(3)的无限维子代数T(3),讨论了它的Z-阶化成分.令G表示T(3)的所有导子所构成的李代数,若令G[t]={φ∈G|φ(T(3)[j])T(3)[t+j],j∈Z},则G=∑t∈ZG(t)具有Z-阶化结构.利用归纳法证明了:若φ∈G[t],且φ(T(3)[j])=0,j=-1,0,…,s.其中s≥-1.若s+t≥-2,则φ=0.以此结论为基础,按Z-次数讨论G中元素,分别证明了当t≥-2时,G[t]=adT(3)[t],当t>3时分两种情况:1)若t 0(mod3)或t≡0(mod3)但t为奇数时,G[-t]=0.2)若t≡0(mod3)但t=2k为偶数时,G[-t]=〈D3k〉.从而得到T(3)的导子代数G=adT(3)〈D3k|k≡0(mod3),k∈N〉.In [ 1 ] an infinite dimension subalgebra T(3 ) of Cartan type modular Lie algebra K(3 ) over a field F of characteristic p = 3 is constructed, and T(3 ) ' s Z - graded components is discussed. The authors denote by G Lie algebra which is consist of T(3 ) ' s derivations. Put G[t] = {φ∈ G | φ ( T( 3 ) [j] ) cohtain in T(3 ) [t+j], arbitary j ∈ Z | , then G = ∑t∈Z G[t] has Z - graded structure. It is proved inductively,if φ ∈ G[t] and φ( T(3 ) [j] ) =0,j = - 1,0,… ,s. where s≥ -1 and s + t ≥ -2,then φ = 0. It is discussed the elements of G and proved that for t≥ -2, G[t] = adT(3 )[t] ;for t 〉 3, it has two cases : ( 1 ) if t absolotely unegvalto 0 ( mod3 ) or t ≡0 ( mod3 ) and t is an odd number, then G[t] = 0. (2) if t ≡0 ( mod3 ) and t = 2k is an even number, G[-t] = 〈D3^k〉. At last it is proved G = adT(3 ) О+ 〈 D3^k | k ≡0 ( mod3 ), k ∈ N), which is a derivation algebra of T(3 ).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.178.82