特征p=3域上李代数T(3)的导子代数  被引量:1

The derivation algebras of Lie algebras T(3) over a field F of characterisitic p=3

在线阅读下载全文

作  者:徐秋丽[1] 张永正[2] 

机构地区:[1]哈尔滨师范大学数学与计算机科学学院 [2]东北师范大学数学与统计学院,吉林长春130024

出  处:《黑龙江大学自然科学学报》2007年第2期245-248,共4页Journal of Natural Science of Heilongjiang University

摘  要:文献[1]构造了特征p=3的域F上的Cartan型模李代数K(3)的无限维子代数T(3),讨论了它的Z-阶化成分.令G表示T(3)的所有导子所构成的李代数,若令G[t]={φ∈G|φ(T(3)[j])T(3)[t+j],j∈Z},则G=∑t∈ZG(t)具有Z-阶化结构.利用归纳法证明了:若φ∈G[t],且φ(T(3)[j])=0,j=-1,0,…,s.其中s≥-1.若s+t≥-2,则φ=0.以此结论为基础,按Z-次数讨论G中元素,分别证明了当t≥-2时,G[t]=adT(3)[t],当t>3时分两种情况:1)若t 0(mod3)或t≡0(mod3)但t为奇数时,G[-t]=0.2)若t≡0(mod3)但t=2k为偶数时,G[-t]=〈D3k〉.从而得到T(3)的导子代数G=adT(3)〈D3k|k≡0(mod3),k∈N〉.In [ 1 ] an infinite dimension subalgebra T(3 ) of Cartan type modular Lie algebra K(3 ) over a field F of characteristic p = 3 is constructed, and T(3 ) ' s Z - graded components is discussed. The authors denote by G Lie algebra which is consist of T(3 ) ' s derivations. Put G[t] = {φ∈ G | φ ( T( 3 ) [j] ) cohtain in T(3 ) [t+j], arbitary j ∈ Z | , then G = ∑t∈Z G[t] has Z - graded structure. It is proved inductively,if φ ∈ G[t] and φ( T(3 ) [j] ) =0,j = - 1,0,… ,s. where s≥ -1 and s + t ≥ -2,then φ = 0. It is discussed the elements of G and proved that for t≥ -2, G[t] = adT(3 )[t] ;for t 〉 3, it has two cases : ( 1 ) if t absolotely unegvalto 0 ( mod3 ) or t ≡0 ( mod3 ) and t is an odd number, then G[t] = 0. (2) if t ≡0 ( mod3 ) and t = 2k is an even number, G[-t] = 〈D3^k〉. At last it is proved G = adT(3 ) О+ 〈 D3^k | k ≡0 ( mod3 ), k ∈ N), which is a derivation algebra of T(3 ).

关 键 词:模李代数 导子代数  

分 类 号:O152.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象