检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学自动化学院,江苏南京210016
出 处:《系统工程与电子技术》2007年第4期665-668,共4页Systems Engineering and Electronics
基 金:国家自然科学基金重点项目(60234010);航空科学基金项目(05E52031);国防基础科研项目资助课题(K1603060318)
摘 要:针对一类模型未知及状态不可测的非线性系统,提出了基于自适应神经网络的故障诊断策略,不仅在线估计神经网络的矩阵权重,而且在线估计高斯函数的宽度和中心。该方法对系统的未知非线性特性没有特别要求,仅对神经网络提出较弱的假设条件。首先利用径向基函数(Radial Basis Function,简称RBF)神经网络构造状态观测器,估计系统的状态。然后利用另一个自适应RBF神经网络作为故障估计器,其输入是系统的估计状态(而不是系统状态),其输出为系统所发生的故障模型。利用Lyapunov稳定理论详细分析了状态误差和故障误差的收敛性,分别给出了两个神经网络的参数调整律,仿真证明了该方法的实用性和有效性。Fault diagnosis architecture based on adaptive neural networks for a class of unknown nonlinear systems with unmeasured states is proposed. The center vector and width vector of Gaussian function are on-line updated but updating weight matrix. Under the mild condition, the problem of fault diagnosis can be solved for the nonlinear systems. The states of system and the faults in system are estimated respectively by employing two RBF neural networks. Estimated states are input to the fault approximator whose outputs are estimated fault. The stability of the error system is analysized in detail, the parameter updating laws for two neural networks are given. Finally, a simulation example is given to illustrate the effectiveness of the approach.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.147.165