检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜峰[1] 高文[1,2] 姚鸿勋[1] 赵德斌[1] 陈熙霖[1]
机构地区:[1]哈尔滨工业大学计算机学院 [2]北京大学信息科学技术学院北京100871
出 处:《计算机研究与发展》2007年第5期873-881,共9页Journal of Computer Research and Development
基 金:国家自然科学基金重点项目(60332010)~~
摘 要:针对手语识别研究中训练样本缺乏,提出了一种衍生数据的方法,有效地解决了动态多数据流手语训练用样本合成问题.利用mean-shift算法可以方便、快捷地得到密度函数梯度的变化方向,从而控制衍生的方向和强度.算法同时考虑到合成样本尽可能包含非特定人的信息及其有效性,对数据所实现的变形不会被识别系统的初始化过程逆转.合成数据驱动的效果受模型的容量、合成的强度与方向影响.在多种实验环境下对驱动效果进行评估,识别率有所提高,在某些例子中提高明显.The lack of training samples is an imperative problem in the research of sign language recognition. In this paper, a method of using derivative data is proposed, which facilitates synthesizing dynamic samples of multi-stream employed in sign language training. With the mean-shift algorithm, the movement direction of density function grads can be obtained easily, thus controling the direction and the intensity of derivation. At the same time, this algorithm can also satisfy the need for the synthesized samples to include as much and as effective information of unspecific signer as possible. Moreover, the method realizes a transformation of data which is irrevocable in the initialization process of the recognition system. The driving effect of the synthesized data depends on the capacity of the model, as well as the intensity and direction of synthesization. After assessing the driving effect under various experiment environments, it is found that in most cases the recognition rate is raised; and in some cases, it is even markedly raised.
关 键 词:合成数据 手语识别 训练 mean—shift算法 非特定人 识别率
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117