基于支持向量机的信用评估模型及风险评价  被引量:20

Credit scoring models and credit-risk evaluation based on support vector machines

在线阅读下载全文

作  者:肖文兵[1] 费奇[1] 万虎[1] 

机构地区:[1]华中科技大学系统工程研究所,湖北武汉430074

出  处:《华中科技大学学报(自然科学版)》2007年第5期23-26,共4页Journal of Huazhong University of Science and Technology(Natural Science Edition)

基  金:国家自然科学基金资助项目(70171015)

摘  要:运用基于支持向量机理来建立一个新的个人信用评估预测模型,以期取得更好的预测分类能力.并对SVM分类结果与三层全连接BPN分类结果进行了比较.结果表明,在判别潜在的贷款申请者中支持向量的判别结果比神经网络的要好.为了减小训练集偏差及为了验证两种方法的鲁棒性,基于两种策略(平衡样本与非平衡样本)交叉验证来进一步评价SVM分类准确性,并对两种方法基于两种策略的误分类作了风险代价分析.A new credit-scoring was developed to provide a new better judgment method, based on support vector machine (SVM) models that accurately classify consumer loan applications. This study also compared the performance of SVM and three-layer fully connected back-propagation neural networks (BPN) in credit scoring. The SVM models consistently performed better than the BPN models in identify potential problem loans. To alleviate the problem of bias in the training set and to examine the robustness of SVM classifiers in identifying problem loans, we cross-validate our results through two different strategies (no-balance sample data set and balance sample data set). In addition, we estimated risk cost of credit scoring error for two models.

关 键 词:信用评估 支持向量机 BP神经网络 交叉确认 风险评估 

分 类 号:TP273.22[自动化与计算机技术—检测技术与自动化装置] F830[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象