检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学电子信息学院,陕西西安710072
出 处:《中国公路学报》2007年第3期97-102,共6页China Journal of Highway and Transport
基 金:国防科技重点实验室基金项目(51454070204HK0320);西北工业大学科技创新基金项目(2003CR080001)
摘 要:为了使交通管理系统能进行可靠的机动车分类,研究了轿车、轻型越野车和货车3种机动车目标的声信号,提出了一种采用子波分解后不同尺度上声信号能量作为特征向量的特征提取算法,并设计了kNN(k近邻)分类器和改进BP神经网络分类器用于目标分类。目标识别和分类试验结果表明:所提出的特征提取算法能够很好地体现不同类型目标之间的差异,提取的特征向量稳健;设计的改进BP神经网络分类器的分类精度可达92.6%,且分类效果优于kNN分类器。In order to get a reliable vehicle classification for the traffic management system, target acoustic signals of three kinds of vehicles, ie car, light cross-country vehicle, and truck were studied. A feature extraction algorithm was proposed which took the time-domain energy of the acoustic signals in different scales after wavelet decomposition as the feature vectors, k-nearest neighbor classifier and improved BP neural network classifier for vehicle target classification were designed. The target recognition and classification experiment results show that the proposed feature extraction algorithm can distinguish different types of vehicles with satisfactory rate of correct recognition, and feature vector is robust. The classification accuracy of improved BP neural network classifier can reach 92. 6%, and classification performance is better than kNN classifier.
关 键 词:交通工程 机动车车型识别 子波尺度空间能量 BP神经网络 声信号 特征提取
分 类 号:U491.116[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63