强大数定律收敛速度的一个推广  被引量:1

A Development of Strong Large Number Laws Convergent Rates

在线阅读下载全文

作  者:陈良均[1] 王定成[1] 

机构地区:[1]电子科技大学应用数学系

出  处:《电子科技大学学报》1997年第1期98-100,共3页Journal of University of Electronic Science and Technology of China

摘  要:文献[1]在文献[2]的基础上讨论了Banach空间中随机变元列{Xi}满足一定条件时的完全收敛性,但收敛速度问题未得到圆满解决。文中进一步指出Banach空间中独立非同分布随机变元列的收敛速度,将薜留根的结果推广。Based on the previous documentary,when the real random variable sequence satisfies the definite condition,the complete convergence is discussed.And this condition is the order of their finite moment which is less than one,but the problem of the convergent rate cant be finished absolutely.In this paper,the convergent rates of the random variabe sequence are point out.At last,when the order of their finite moment is less than one,the result obtained by Xue Liugen is generalized to Banach space and the results are also shown in this paper.

关 键 词:巴拿赫空间 随机变量 强大数定律 收敛速度  

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象