检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学电子信息工程学院,北京100083
出 处:《航空学报》2007年第3期667-672,共6页Acta Aeronautica et Astronautica Sinica
基 金:国家自然科学基金(60502019)
摘 要:核线性判别准则(KLDA)是一种非线性特征提取准则。利用KLDA提取MSTAR SAR图像特征,既达到较理想的识别概率,又可克服SAR图像对方位的敏感性。但此时训练样本最多,KLDA的计算代价高。为了解决这一问题,提出一种快速特征向量选择法(FFVS)。FFVS把类别和方位相似的SAR图像分成若干组,然后快速选择各组中部分图像组成一个集合且其到高维特征空间的映射作为一组基。利用该组基的线性组合表示任一样本和投影算子,降低了KLDA中核矩阵的阶数,达到降低计算代价的目的。实验结果表明,FFVS与KLDA组合能达到理想的识别结果。Kernel linear discriminant analysis (KLDA) is essentially a nonlinear feature extraction criterion. This work uses KLDA to extract the feature of MSTAR SAR images, through which the recognition rate is high and the intrinsic azimuth sensitivity in SAR image is overcome. At the same time, the KLDA computation cost is too high on the condition of more training samples. In order to deal with it, a fast feature vector select (FFVS) scheme is adopted that divides the total images into several groups according to the dissimilarity of target's classes and poses in image. The FFVS can fast select a part of images from each group as a subset whose mapping in high dimension feature space forms a basis. Each sample and the projection operator can be expressed by a linear combination of the basis, so the size of KLDA kernel matrix is decreased and the computation cost is reduced. Experimental results show a good recognition performance is achieved by use of the hybrid algorithm that combines FFVS and KLDA.
关 键 词:核线性判别准则 特征提取 识别 方位敏感 快速特征向量选择
分 类 号:TN951[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145