检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]深圳广播电视大学 [2]华中理工大学数学系
出 处:《华中理工大学学报》1997年第1期95-98,共4页Journal of Huazhong University of Science and Technology
基 金:理学院基金
摘 要:研究了多目标minimax问题的极大熵方法的构成.By using the idea that a complicated problem can be approximated by a simple and easily solved one so that a complicated nondifferentiable problem can be solved by solving a simpler differentiable one, the structure of a maximum entropy method for solving a class of multiobjective minimax problems is studied. In order to guarantee the reliability of the solution, the properties of the gradient limit of the approximating function are investigated. It is proved that any limit point of the Fritz John point range of an approximating problem is the Fritz John point of the original multiobjective minimax problem under weaker conditions. Furthermore, by employing the concept of generalized linear independence, the relation between the Kuhn Tucker points of the approximating problem and the original one is obtained.
关 键 词:MINIMAX问题 极大熵 收敛性 最佳化 多目标优化
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.25.212