检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张伟[1] 胡昌华[2] 焦李成[1] 薄列峰[1]
机构地区:[1]西安电子科技大学智能信息处理研究所,陕西西安710071 [2]第二炮兵工程学院,302室陕西西安710025
出 处:《西安电子科技大学学报》2007年第3期428-432,437,共6页Journal of Xidian University
基 金:国家部委预研课题资助(203020301)
摘 要:为改善最小二乘支持向量机的泛化性能,将克隆规划、交叉验证相结合的优化算法用于最小二乘支持向量机的参数优化.克隆规划算法是具有局部、全局搜索能力的优化算法,能有效避免陷入局部极值;交叉验证算法的无偏估计性抑制了训练过程中“过拟合”和“欠拟合”.在该优化算法中,用交叉验证误差构造抗体抗原亲合度,用克隆规划算法寻找最小二乘支持向量机的最优参数.用优化的最小二乘支持向量机回归模型建立了惯性器件时间序列预测模型.实验结果验证了算法的有效性及预测模型的泛化性能.预测模型为动态补偿、故障预测提供了依据.For improving the generalization ability of the least square support vector machine (LSSVM), the parameter optimization algorithm of clone programming-cross validation is employed to select optimal parameters of LSSVM. The clone programming algorithm has the superior capability in local and global search, and local minimums are refrained efficiently; cross validation has the unbiased estimator property, and therefore, the problems such as over training or insufficient training are avoided. In the optimization algorithm, the avidity function is constructed by the cross validation error, and moreover, optimal parameters of LSSVM are chosen by the clone programming algorithm. The time series forecasting model of the inertial component is built with LSSVM. Experimental results prove the effectiveness of the optimization algorithm and generalization ability of the forecasting model, and the forecasting model provides a support on dynamic compensation and fault forecasting of the inertial component.
关 键 词:克隆规划 交叉验证 参数优化 最小二乘支持向量机 惯性器件预测
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117