基于启发式方法和支持向量机方法预测α环糊精—苯衍生物包结物稳定常数  被引量:2

QSPR models for the prediction of association constants for the inclusion complexation ofα-cyclodextrins of benzene based on the heuristic method and support vector machine

在线阅读下载全文

作  者:司宏宗[1] 姚小军[2] 刘焕香[2] 王杰[2] 李加忠[2] 胡之德[2] 刘满仓[2] 

机构地区:[1]青岛大学 计算科学与工程技术研究中心,山东青岛266071 [2]兰州大学 化学化工学院,甘肃兰州730000

出  处:《兰州大学学报(自然科学版)》2007年第3期81-85,共5页Journal of Lanzhou University(Natural Sciences)

基  金:国家自然科学基金(20275014);青岛大学引进人才基金资助项目.

摘  要:建立了基于启发式方法和支持向量机方法的定量结构性质关系(QSPR)模型,用于预测α-环糊精与单取代或1,4-二取代苯衍生物结合后包结物的稳定常数.通过计算得到6个参数:分子重量、β-极化度、相对阳性电荷、相对阳性电荷表面积、DPSA3和分子轨道最大成键贡献,用于启发式方法和支持向量机方法建立QSPR模型,其相关系数分别是0.94和0.98,LOO交互检验的相关系数分别为0.92和0.95.因此,用支持向量机方法建立的模型要优于启发式方法,其预测能力更强、模型的稳定性更好.Support vector machine, as a novel machine learning technique, was used to construct QSPR model to describe the complexation of α-cyclodextrin with mono-and 1, 4-disubstituted benzene derivative molecular descriptors. The association constants (Ka) for the inclusion complexation of cyclodextrins and benzene derivatives are calculated by the models found with a high degree of precision. The excellent prediction results with correlation coefficient of the heuristic method and support vector machines were 0.94 and 0.98 respectively. The cross-validation correlation coefficient of heuristic method and support vector machine were 0.92 and 0.95 respectively. We also found that six parameters of molecular weight, max bonding contribution of a MO, RPCG, RPCS, DPSA-3 and BETA polarizability can be used not only to predict Ka of the inclusion complexation of cyclodextrins and benzene derivatives but also to explain the mechanism of cyclodextrin combined with the guest. The advantages and disadvantages of two approaches were discussed, and it is concluded that the support vector machine is a better method to make QSPR models for predicting Ka.

关 键 词:定量结构性质关系 Α-环糊精 启发式方法 支持向量机 

分 类 号:TP389.1[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象