检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安邮电学院信息与控制系,陕西西安710061
出 处:《计算机工程与设计》2007年第12期2883-2885,共3页Computer Engineering and Design
基 金:国家自然科学基金项目(60572133)
摘 要:基于二维熵的分割方法是常用的阈值分割技术,其基本假设是对象区域和背景区域占据了二维直方图的绝大部分区域,即假设对象区域和背景区域的概率和近似为1。Brink提出了通过将对象区域的熵和背景区域的熵先取小然后再取大的方法来获得阈值,该方法存在的不足是忽略了边界区域的信息对分割结果的影响,鉴于此,提出了一种结合二维熵和模糊熵的图像分割方法,先采用Brink提出的二维熵法对图像进行初步分割,再采用模糊熵作后续处理以弥补忽略边界信息带来的问题。实验结果表明,对于含噪图像,该方法的分割效果是比较理想的。2-dimensional (2-D) entropic thresholding method is a common image segmentation method. A basic assumption of this method is that regions ofobject and background cover almost all ofthe 2-D histogram, thatis, the probability sum for object region and background region is close to 1. Brink proposed that the best threshold point is found by maximizing the lesser one between the entropy of background region and that of object region. One drawback is that the method neglects the effect of edges information. In the light of this, an image segmentation method combining 2-D entropic and fuzzy entropy is presented. Firstly, pre-segmentation is made by Brink's 2-D entropic method, secondly, further processing using fuzzy entropy is provided to offset neglecting the information of edges. Experimental results show that the proposed method can obtain better segmentation effect for images with noise.
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222