检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统仿真学报》2007年第13期2999-3004,共6页Journal of System Simulation
基 金:安徽省人才开发基金(2004Z025)
摘 要:从统计学原理、负熵近似计算、算法的稳定性定理、最大负熵方法的历史演变几个方面,对Hyvrinen负熵准则盲分离算法作出全面的剖析,指出:(1)在负熵ICA算法中,不应引用联合负熵的定义,只宜采用边缘负熵的定义;(2)中心极限定理只能为负熵ICA算法提供一定的直观解释,但不能成为算法的统计学依据;(3)Hyvrinen等人给出的负熵计算公式并不能正确度量随机变量的非高斯性;(4)负熵ICA算法实现盲分离的真正机理是信号非线性变换后均值的极值特性,由此极值特性提出负熵准则未必是合适的。From the aspects of statistic principles, approximation of negentropy, stability theorem and historical clues, Hyvarinen's negentropy-based approach of blind source separation was analyzed in detail. The arguments were proposed: (1) In this approach of ICA, a definition of marginal negentropy, instead of joint negentropy should be stated. (2) The negentropy-based ICA could be partly interpreted by the Central Limit Theorem (CLT). However, CLT could not be a convincing statistics base for the approach. (3) The formula of negentropy approximation presented by Hyvairinen can not correctly measure the non-gaussianity. (4) The actual mechanism of separating sources of the approach is the extremum property of expectation of a variable after non-linear transform. However, it may not be appropriate to derive from the criterion of negentropy.
关 键 词:盲信号分离 独立分量分析 FASTICA 负熵 非高斯性
分 类 号:TN911.9[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112