检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:葛斌[1]
机构地区:[1]哈尔滨工程大学理学院,黑龙江哈尔滨150001
出 处:《黑龙江大学自然科学学报》2007年第3期286-290,共5页Journal of Natural Science of Heilongjiang University
摘 要:讨论以可逆算子作为权序列的无穷重的算子权移位的强不可约性.这里给出了三个充分条件:设S是以{Wk}∞k=1(其中Wk∈L(H),k∈Z)为权序列的算子权移位.(1){Wn-1Wn--11…W1-1AW1W2…Wn}n∞=1有界蕴含A=λI.(或A=λI+Q,Q是严格上三角算子,λ∈C);(2){Wn-1Wn--11…W1-1AW1W2…Wn}n∞=1有界蕴含σ(A)是单点集;(3){Wn-1Wn--11…W1-1AW1W2…Wn}∞n=1有界蕴含A是强不可约的.最后给出了利用上述条件判定S强不约性的例子.The strong irreducibility of infinite multiplicity operator weighted shifts with weighted sequence of inverse operators are discussed. It obtains that three sufficient conditions: let S be an operator weighted shift with weighted sequence{Wk}^∞k=1then(1) is bounded implies that {Wn^-1Wn-1^-1…W1^-1AW1W2…Wn}n^∞=1 is strict upper triangular operator,λ∈C;(2){Wn^-1Wn-1^-1…W1^-1AW1W2…Wn}n^∞=1 is bounded implies that σ Q is a single point set; and (3) {Wn^-1Wn-1^-1…W1^-1AW1W2…Wn}^∞n=1is bounded implies that A is strongly irreducible. At the last two examples are given, which verify the strong irreducibility of S by these conditions mentioned above.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7