基于神经网络的车身零件检具概念设计  被引量:1

Concept design of measuring fixtures for auto-body parts by neural network

在线阅读下载全文

作  者:江景涛[1] 隋仁东[1] 胡彩旗[1] 

机构地区:[1]莱阳农学院,山东青岛266109

出  处:《机械》2007年第7期16-18,共3页Machinery

摘  要:采用人工神经网络进行车身覆盖件检具概念设计,以检测特征的7个分量作为神经网络的输入,以检具类型分量作为输出,对构成的神经网络用生产中的100个实例作为样本进行训练,达到误差平方和小于0.001的目标,得到检具概念设计神经网络模型,并通过车身一零件检具概念设计为例验证了该方法的有效可行,从而达到在一族相似零件的众多检具概念设计方案中进行优选的目的。Measuring fixtures for auto-body parts are designed by neural network based on discussing measuring features of auto-body parts, and the input of neural network model is composed of 7 sets of measuring features, the output is composed of 4 types of Measuring fixtures. In order to obtain error (between output of sample and model) less than 0.001, the neural network model is trained by 100 sets of example dates, then a example is used to validate Neural network model for selecting types of Measuring fixtures, and results show that the model can select optimal type of Measuring fixture for measuring features of auto-body part.

关 键 词:车身零件 检具概念设计 神经网络 

分 类 号:U463.82[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象