检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]莱阳农学院,山东青岛266109
出 处:《机械》2007年第7期16-18,共3页Machinery
摘 要:采用人工神经网络进行车身覆盖件检具概念设计,以检测特征的7个分量作为神经网络的输入,以检具类型分量作为输出,对构成的神经网络用生产中的100个实例作为样本进行训练,达到误差平方和小于0.001的目标,得到检具概念设计神经网络模型,并通过车身一零件检具概念设计为例验证了该方法的有效可行,从而达到在一族相似零件的众多检具概念设计方案中进行优选的目的。Measuring fixtures for auto-body parts are designed by neural network based on discussing measuring features of auto-body parts, and the input of neural network model is composed of 7 sets of measuring features, the output is composed of 4 types of Measuring fixtures. In order to obtain error (between output of sample and model) less than 0.001, the neural network model is trained by 100 sets of example dates, then a example is used to validate Neural network model for selecting types of Measuring fixtures, and results show that the model can select optimal type of Measuring fixture for measuring features of auto-body part.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.72.117