检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《重庆大学学报(自然科学版)》2007年第7期104-108,共5页Journal of Chongqing University
基 金:浦东新区科技发展基金资助(PKK2005-07);重庆大学研究生院创新基金资助(200506Y1A0230130);教育部博士点基金资助(20040611002)
摘 要:由于采用传统的分类器进行检测时,存在检测率低而误报率高的问题。提出了一种基于免疫聚类的自适应分类器方法,采用多信息粒度的思想有效地克服了聚类算法与分类算法间的不一致性。通过在真实网络数据集上对多种入侵行为的检测结果表明:该分类器的检测率高、漏报率和误报率低,较RBF分类器和BP分类器具有更好的分类性能和推广性能。The distribution properties of the normally data and anomaly data in the network connectivity features have huge differences ; therefore, there exist the low rate of detection and false positive rate problem for the traditional classifier which is applied to the network intrusion detection. An adaptive classifier based on the artificial immune cluster is presented. The new classifier adopts multi -granularities idea and it effectively eliminates the inconsistency between the classification algorithm and the clustering algorithm. Through the classification of the data sets in real variety of network intrusion data sets, experimental results show that the classifier has high detection rate and low false positive rate; it has better classification performance and generalization ability than RBF and BP classifiers.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222