检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:康丽峰[1] 尹成群[2] 毕红博[2] 屈利[2]
机构地区:[1]河北建筑工程学院,河北张家口075024 [2]华北电力大学电子与通信工程系,河北保定071003
出 处:《电力需求侧管理》2007年第4期22-26,共5页Power Demand Side Management
摘 要:准确的短期负荷预测是作出正确营销决策的依据。采用小波变换对负荷序列进行分解,对于每一分解序列,分别按照各自的特点选择出比较合适的影响因素,采用信息熵理论和主成份分析相结合的属性约简法对其进行约简,并利用动态聚类对各分解序列的样本归类,通过灰色关联分析找到与预测时刻负荷模式最接近的一些典型样本,训练各分解序列相应的神经网络预测模型,最后通过序列重构,得到完整的负荷预测结果。采用实际负荷数据进行测试,表明这一方法预测效果较好。The accurate short-term load forecast is an accordance to make right marketing decision. The detailed process is as follows. Firstly, wavelet transform is employed to decompose the load sequence. To every decomposed sequence, according to each character the adequate effect factors are chosen. Secondly, information entropy and principal component analysis are combined for data reduction. By means of dynamic clustering each decomposed sequence is sample classified. Thirdly through gray relationship analysis it finds out some typical samples that are most close to forecasting-hour load model Then we can train the neural network forecast model correspond to every decomposed sequence. At last through reconstructing sequence, the complete load forecast result is gotten. The actual load data testing shows that the forecast result through using this method is good.
关 键 词:负荷预测 神经网络 信息熵 小波变换 动态聚类 灰色关联分析
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117