检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《西安建筑科技大学学报(自然科学版)》2007年第2期293-296,共4页Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基 金:全国教育科学"十五"规划重点课题(EHA030431);商洛学院科研基金项目(06SKY115)
摘 要:从离散型Roger-Hlder不等式出发,通过归纳和类比的思想方法,得到了相应的积分型不等式,又在研究积分型不等式的基础上,推广和加强了其积分型不等式,并运用算术几何平均值不等式的推广形式、Jensen不等式和构造性方法给出了十分简洁有趣的证明.最后讨论了Roger-Hlder积分不等式的加强推广式与著名的Cauchy-Schwarz积分不等式、Kantorovich积分不等式及Radon积分不等式的联系,凸显其应用的广泛性和内在规律性.By means of induction and analogy, the paper popularized Roger-Hoelder's dispersed inequality, in obtaining the corresponding integral inequality. It also provides the constructive demonstration in furthering the popularization and enhancement of its integral-type inequality on the base of first period study by using the popularized form of arithmetic-geometry mean inequality, Jensen inequality and the constructive demonstration. Finally the paper discussed the relationship between the popularized and reinforced form of Roger-Hoelder's integral inequality, and the famous Cauchy-Schwarz integral inequality, Kantorovich integral inequality and Randon integral inequality to show the extensiveness application and inherent regularity of Roger-Hoelder's integral inequality
关 键 词:Roger-Hlder不等式 积分不等式 加强推广式 构造性方法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.5.121