基于RBF神经网络的抗噪语音识别  被引量:4

Noise-robust speech recognition based on RBF neural network

在线阅读下载全文

作  者:白静[1] 张雪英[1] 侯雪梅[1] 

机构地区:[1]太原理工大学信息工程学院,太原030024

出  处:《计算机工程与应用》2007年第22期28-30,共3页Computer Engineering and Applications

基  金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60472094);山西省自然科学基金(the Natural Science Foundation of Shanxi Province of China under Grant No.20051039)。

摘  要:针对目前在噪音环境下语音识别系统性能较差的问题,利用RBF神经网络具有最佳逼近性能、训练速度快等特性,分别采用聚类和全监督训练算法,实现了基于RBF神经网络的抗噪语音识别系统。聚类算法的隐含层训练采用K-均值聚类算法,输出层的学习采用线性最小二乘法;全监督算法中所有参数的调整基于梯度下降法,它是一种有监督学习算法,能够选出性能优良的参数。实验表明,在不同的信噪比下,全监督算法较之聚类算法有更高的识别率。To solve the problem that recognition rates of speech recognition systems decrease in the noisy environment presently, uses character possessing RBF neural network,which have optimal approach capability and the fast training speed,adopts clustering algorithm and whole supervision algorithm and realizes a noise-robust speech recognition system based on RBF neural network.The hidden layer training of clustering algorithm used K-means clustering algorithm and output layer learning used linear least mean square.The adjustment of the entire parameters of whole supervision algorithm is based on grads decline method.It is a kind of supervised learning algorithm and can choose excellent parameters.Experiments show that whole supervision algorithm have higher recognition rates in different SNRs than clustering algorithm.

关 键 词:语音识别 RBF神经网络 聚类算法 全监督算法 

分 类 号:TN912[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象