检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学计算机科学与技术系,合肥230039
出 处:《计算机学报》2007年第8期1277-1285,共9页Chinese Journal of Computers
摘 要:KNN作为一种简单的分类方法在文本分类中有广泛的应用,但存在着计算量大和训练文档分布不均所造成的分类准确率下降等问题.针对这些问题,基于最小化学习误差的增量思想,该文将学习型矢量量化(LVQ)和生长型神经气(GNG)结合起来提出一种新的增量学习型矢量量化方法,并将其应用到文本分类中.文中提出的算法对所有的训练样本有选择性地进行一次训练就可以生成有效的代表样本集,具有较强的学习能力.实验结果表明:这种方法不仅可以降低KNN方法的测试时间,而且可以保持甚至提高分类的准确性.As a simple classification method KNN has been widely applied in text classification. There are two problems in KNN-based text classification: the large computation load and the deterioration of classification accuracy caused by the non-uniform distribution of training samples. To solve these problems, based on minimizing the increment of learning errors and combining LVQ and GNG, the authors propose a new growing LVQ method and apply it to text classification. The method can generate an effective representative sample set after one phase of selective training of the training sample set, and hence has a strong learning ability. Experimental results show that this method can not only reduce the testing time of KNN, but also maintain or even improve the accuracy of classification.
关 键 词:学习型矢量量化(LVQ) 生长型神经气(GNG) 学习误差 类间距离 学习概率
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74