检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009
出 处:《计算机技术与发展》2007年第8期84-87,91,共5页Computer Technology and Development
摘 要:结合BBSP,提出了一种称做最终位置归纳序列模式挖掘(LPI-SPM)的新算法,该算法可以有效地从大型数据库中获取所有的频繁序列模式。该策略与以前工作的不同点在于:当判断一个序列是否是模式时,通过扫描数据库创建S-矩阵来实现(PrefixSpan)或者通过对候选项进行交运算(SPADE)或并运算(BBSP)统计其数量来实现。相反,在基于下列事实的基础上LPI-SPN会很容易实施这一过程,即若一个项的最终位置小于当前前缀位置,在相同的顾客序列中,该项就不会出现在当前前缀的后面。LPI-SPM在序列挖掘过程中可以大大缩减搜索空间,而且挖掘序列模式的效力可观。实验结果表明,在各种数据集合中LPI-SPM胜过BBSP三倍。In this paper, by combining BBSP(bitmap based sequential patterns), propose a new algorithm called Last Position Induction Sequential Pattern Mining (LPI - SPM), Which can efficiently get all the frequent sequential patterns from a large database. The main difference between our strategy and the previous works is that when judging whether a sequence is a pattern or not, they use S- Matrix by scanning projected database (PrefixSpan) or count the number by joining (SPADE) or ANDing with the candidate item (BBSP). In contrast, LPI - SPM can easily implement this process based on the following fact - if an item's last position is smaller than the current prefix position, the item can not appear behind the current prefix in the same customer sequence. LPI- SPM could largely reduce the search space during raining process and is considerable effectiveness in mining sequential pattern. Our experimental results show that LPI - SPM outperforms BBSP up to three times on all kinds of dataset.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104