完全(α,β)-绝对纯幺半群  

Completely(α,β)-absolutely pure monoid

在线阅读下载全文

作  者:宋杰[1] 唐焕文[1] 

机构地区:[1]大连理工大学应用数学系

出  处:《大连理工大学学报》2007年第4期610-612,共3页Journal of Dalian University of Technology

基  金:国家自然科学基金资助项目(10571018)

摘  要:完全右内射幺半群是一类具有重要研究价值的半群,完全α-绝对纯幺半群和完全右FC-内射(FSF-内射)幺半群是其两种不同的推广.通过引入(α,β)-绝对纯S-系的概念,将完全α-绝对纯幺半群和完全右FC-内射(FSF-内射)幺半群进一步推广为完全(α,β)-绝对纯幺半群,即所有S-系是(α,β)-绝对纯的幺半群.讨论了(α,β)-绝对纯S-系的性质,给出了完全(α,β)-绝对纯幺半群的理想-同余刻画,从而完全α-绝对纯幺半群和完全右FC-内射(FSF-内射)幺半群等的对应结论都可由此结果推出.Completely right injective monoids are of great importance to the study of semigroups. Completely a-absolutely pure monoids and completely right FC-injective (FSF-injective) monoids are two different generalizations of completely right injective monoids. The concept of (α,β)-absolutely pure S-act is introduced, and then completely a-absolutely pure monoids and completely right FC-injective (FSF-injective) monoids are further extended to completely (α,β)-pure monoid, namely, all S-acts are (α,β)-absolutely pure. The properties of (α,β)-absolutely pure S-acts are investigated, and a characterization of completely (α,β)-pure monoid is presented in terms of right ideal and right congruence. Some conclusions about completely a-absolutely pure monoids and completely right FC-injective (FSF-injective) monoids are direct corollaries of the discussions.

关 键 词:幺半群  β)-绝对纯S-系 完全(α β)-绝对纯幺半群 方程组 

分 类 号:O152.7[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象