检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘彦鹏[1] 仲玉芳[1] 钱积新[1] 吴明光[1]
机构地区:[1]浙江大学,浙江杭州310027
出 处:《热力发电》2007年第8期23-26,共4页Thermal Power Generation
摘 要:提出了一种蚁群前馈神经网络模型。采用蚁群算法和BP算法相结合的方法训练神经网络,可避免单纯BP算法容易陷入局部最优的不足,降低算法对初值的敏感性。应用蚁群前馈神经网络建立了灰熔点的模型,并对模型的预测性能进行了验证。结果表明,该方法的预测精度比单一的BP神经网络模型有较大提高,训练后的网络模型可以用于煤灰熔点的预报。An ant colony- BP neural network model has been put forward. Adopting method combining ant colony with back propagation (BP) algorithm to train the neural network, can overcome the drawback of pure BP algorithm to easily converge on local optima, decreasing the sensitivity of algorithm to the initial value. A model for predicting the coal ash fusion point has been established by using ant colony and BP neural network, and verification of prediction performance for the said model being carried out. Results show that the predicted precision of said method is more enhanced than that of a single BP neural network model, the trained network model can be used for prediction of coal ash fusion point.
关 键 词:煤灰熔点 蚁群算法 BP算法 蚁群前馈 神经网络 模型
分 类 号:TK323[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30